Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.112
Filter
1.
Brain Circ ; 10(1): 35-41, 2024.
Article in English | MEDLINE | ID: mdl-38655435

ABSTRACT

Acute ischemic stroke (AIS) condition assessment and clinical prognosis are significantly influenced by the compensatory state of cerebral collateral circulation. A standard clinical test known as single-phase computed tomography angiography (sCTA) is useful for quickly and accurately assessing the creation or opening of cerebral collateral circulation, which is crucial for the diagnosis and treatment of AIS. To improve the clinical application of sCTA in the clinical assessment of collateral circulation, we examine the present use of sCTA in AIS in this work.

2.
PeerJ Comput Sci ; 10: e1977, 2024.
Article in English | MEDLINE | ID: mdl-38660191

ABSTRACT

Emotional recognition is a pivotal research domain in computer and cognitive science. Recent advancements have led to various emotion recognition methods, leveraging data from diverse sources like speech, facial expressions, electroencephalogram (EEG), electrocardiogram, and eye tracking (ET). This article introduces a novel emotion recognition framework, primarily targeting the analysis of users' psychological reactions and stimuli. It is important to note that the stimuli eliciting emotional responses are as critical as the responses themselves. Hence, our approach synergizes stimulus data with physical and physiological signals, pioneering a multimodal method for emotional cognition. Our proposed framework unites stimulus source data with physiological signals, aiming to enhance the accuracy and robustness of emotion recognition through data integration. We initiated an emotional cognition experiment to gather EEG and ET data alongside recording emotional responses. Building on this, we developed the Emotion-Multimodal Fusion Neural Network (E-MFNN), optimized for multimodal data fusion to process both stimulus and physiological data. We conducted extensive comparisons between our framework's outcomes and those from existing models, also assessing various algorithmic approaches within our framework. This comparison underscores our framework's efficacy in multimodal emotion recognition. The source code is publicly available at https://figshare.com/s/8833d837871c78542b29.

3.
Curr Med Chem ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38638037

ABSTRACT

INTRODUCTION: Breast cancer (BRCA) is one of the leading causes of cancer-related death in women. The improvement of the BRCA risk assessment method is of positive clinical significance. Although many clues showed the potential role of disulfidptosis in BRCA as a novel type of programmed cell death, whether disulfidptosis is involved in BRCA tumorigenesis remains unclear. METHOD: We used LASSO-univariate Cox analysis and multivariate Cox analysis to identify six disulfidptosis-related lncRNAs (DPLs) that correlated with BRCA clinical outcome and confirmed that these DPLs were independent prognostic factors for BRCA (YTHDF3-AS1, AC002398.1, AL451085.2, AC092718.4, AC097662.1 and AC053503.5). The BRCA risk prognosis model was subsequently established based on these DPLs. RESULT: After verifying the model reliability in predicting prognosis, immune infiltration and somatic mutation analysis showed significant differences in the immune microenvironment and mutation of DPLs by risk stratification. Immunotherapy response and drug resistance analysis suggest the reference value of DPLs in clinical individualized therapy. CONCLUSION: The abnormal expressions of selected DPLs were further validated by the BRCA cell line experiment. Our results shed new light on the role of DPLs in BRCA.

4.
Genomics ; 116(3): 110845, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38614287

ABSTRACT

Rubus, the largest genus in Rosaceae, contains over 1400 species that distributed in multiple habitats across the world, with high species diversity in the temperate regions of Northern Hemisphere. Multiple Rubus species are cultivated for their valuable fruits. However, the intrageneric classification and phylogenetic relationships are still poorly understood. In this study, we sequenced, assembled, and characterized 17 plastomes of Rubus, and conducted comparative genomics integrating with 47 previously issued plastomes of this genus. The 64 plastomes of Rubus exhibited typical quadripartite structure with sizes ranging from 155,144 to 156,700 bp, and contained 132 genes including 87 protein-coding genes, 37 tRNA genes and eight rRNA genes. All plastomes are conservative in the gene order, the frequency of different types of long repeats and simple sequence repeats (SSRs), the codon usage, and the selection pressure of protein-coding genes. However, there are also some differences in the Rubus plastomes, including slight contraction and expansion of the IRs, a variation in the numbers of SSRs and long repeats, and some genes in certain clades undergoing intensified or relaxed purifying selection. Phylogenetic analysis based on whole plastomes showed that the monophyly of Rubus was strongly supported and resolved it into six clades corresponding to six subgenera. Moreover, we identified 12 highly variable regions that could be potential molecular markers for phylogenetic, population genetic, and barcoding studies. Overall, our study provided insight into plastomic structure and sequence diversification of Rubus, which could be beneficial for future studies on identification, evolution, and phylogeny in this genus.

5.
Acta Haematol ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38626745

ABSTRACT

INTRODUCTION: The definition of primary plasma cell leukemia (pPCL) has been revised from ≥20% to ≥5% circulating plasma cells (CPC). However, the precise prognosis associated with CPC remains controversial. This study aimed to investigate prognostic biomarkers for myeloma patients based on CPC presence. METHODS: A comprehensive analysis was conducted on 309 consecutive patients diagnosed with either multiple myeloma or pPCL, utilizing peripheral blood smears stained with Wright-Giemsa. RESULTS: Patients were grouped by CPC percentage: 0% (221, 71.5%), 1-4% (49, 15.9%), 5-19% (16, 5.2%), ≥20% (23, 7.4%). CPC >5% correlated with unfavorable characteristics, including anemia, renal dysfunction, and advanced International Staging System. Common cytogenetic abnormalities such as 1q21 amplification, 17p deletion, and Myc rearrangement were prevalent among CPC-positive patients. Median progression-free survival (PFS) and overall survival (OS) were shorter in patients with CPC ≥5% (29.47 vs. 10.03 months; 64.10 vs. 12.30 months). Additionally, PFS and OS were shorter in CPC-positive patients without autologous hematopoietic stem cell transplantation (ASCT) and those with response < partial remission to the first-line regimen. Furthermore, an association emerged between soft tissue-related extramedullary disease and inferior PFS, while Myc rearrangement correlated with abbreviated OS. CONCLUSION: Biological characteristics displayed greater aggressiveness in patients with positive CPC, leading to significantly shorter PFS and OS. The presence of CPC, ASCT, and overall response rate were independent prognostic factors. While no new threshold for pPCL with CPCs is proposed, but Myc rearrangements and CPC positivity could serve as ultra-high-risk factors for multiple myeloma.

6.
Sci Rep ; 14(1): 8759, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627452

ABSTRACT

From the macroscopic to the microscopic world, quantum mechanical effects in acoustics and elastic waves have become increasingly important. Observations on the quantum effects of acoustic and elastic waves using experimental methods have been reported in the literature. However, the conventional formulations of acoustic and elastic waves are still mainly governed by classical models. In this study, we investigated the quantization of acoustic and elastic waves using generalized Lorenz gauges. The potential variables of acoustic and elastic waves can be quantized in a manner similar to that of electrodynamics. The results include the Schrödinger equation with minimal coupling between the field and particles. The quantization of field variables is established as a consequence of the gauge symmetry property of the Schrödinger equation. Later, we explored the connections between the parallel formulations of mechanics and waves through an algebraic aspect. This highlights the isomorphism pattern from the theoretical characterization within the parallel formulations. To support the results, the derivations of potential formulations based on Lorenz gauges and functional mapping between field variables are presented.

7.
Life Sci ; 346: 122631, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621585

ABSTRACT

AIMS: Cellular senescence (CS) represents an intracellular defense mechanism responding to stress signals and can be leveraged as a "vulnerability" in cancer treatment. This study aims to construct a CS atlas for gastric cancer (GC) and uncover potential therapeutics for GC patients. MATERIALS AND METHODS: 38 senescence-associated regulators with prognostic significance in GC were obtained from the CellAge database to construct Gastric cancer-specific Senescence Score (GSS). Using eXtreme Sum algorism, GSS-based drug repositioning was conducted to identify drugs that could antagonize GSS in CMap database. In vitro experiments were conducted to test the effect of combination of palbociclib and exisulind in eliminating GC cells. KEY FINDINGS: Patients with high GSS exhibited CS-related features, such as CS markers upregulation, adverse clinical outcomes and hypomethylation status. scRNA-seq data showed malignant cells with high GSS exhibited enhanced senescence state and more immunosuppressive signals such as PVR-CD96 compared with malignant cells with low GSS. In addition, the GSS-High cancer associated fibroblasts might secrete cytokines and chemokines such as IL-6, CXCL1, CXCL12, and CCL2 to from an immunosuppressive microenvironment, and GSS could serve as an indicator for immunotherapy resistance. Exisulind exhibited the greatest potential to reverse GSS. In vitro experiments demonstrated that exisulind could induce apoptosis and suppress the proliferation of palbociclib-induced senescent GC cells. SIGNIFICANCE: Overall, GSS offers a framework for better understanding of correlation between senescence and GC, which might provide new insights into the development of novel therapeutics in GC.

8.
Biomed Eng Online ; 23(1): 38, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561821

ABSTRACT

BACKGROUND: After stroke, restoring safe, independent, and efficient walking is a top rehabilitation priority. However, in nearly 70% of stroke survivors asymmetrical walking patterns and reduced walking speed persist. This case series study aims to investigate the effectiveness of transcutaneous spinal cord stimulation (tSCS) in enhancing walking ability of persons with chronic stroke. METHODS: Eight participants with hemiparesis after a single, chronic stroke were enrolled. Each participant was assigned to either the Stim group (N = 4, gait training + tSCS) or Control group (N = 4, gait training alone). Each participant in the Stim group was matched to a participant in the Control group based on age, time since stroke, and self-selected gait speed. For the Stim group, tSCS was delivered during gait training via electrodes placed on the skin between the spinous processes of C5-C6, T11-T12, and L1-L2. Both groups received 24 sessions of gait training over 8 weeks with a physical therapist providing verbal cueing for improved gait symmetry. Gait speed (measured from 10 m walk test), endurance (measured from 6 min walk test), spatiotemporal gait symmetries (step length and swing time), as well as the neurophysiological outcomes (muscle synergy, resting motor thresholds via spinal motor evoked responses) were collected without tSCS at baseline, completion, and 3 month follow-up. RESULTS: All four Stim participants sustained spatiotemporal symmetry improvements at the 3 month follow-up (step length: 17.7%, swing time: 10.1%) compared to the Control group (step length: 1.1%, swing time 3.6%). Additionally, 3 of 4 Stim participants showed increased number of muscle synergies and/or lowered resting motor thresholds compared to the Control group. CONCLUSIONS: This study provides promising preliminary evidence that using tSCS as a therapeutic catalyst to gait training may increase the efficacy of gait rehabilitation in individuals with chronic stroke. Trial registration NCT03714282 (clinicaltrials.gov), registration date: 2018-10-18.


Subject(s)
Stroke Rehabilitation , Stroke , Humans , Treatment Outcome , Walking/physiology , Stroke/complications , Stroke/therapy , Gait/physiology , Survivors
9.
Opt Express ; 32(7): 11323-11336, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38570982

ABSTRACT

The lensless camera with incoherent illumination has gained significant research interest for its thin and flexible structure. However, it faces challenges in resolving scenes with a wide depth of field (DoF) due to its depth-dependent point spread function (PSF). In this paper, we present a single-shot method for extending the DoF in Fresnel zone aperture (FZA) cameras at visible wavelengths through passive depth estimation. The improved ternary search method is utilized to determine the depth of targets rapidly by evaluating the sharpness of the back propagation reconstruction. Based on the depth estimation results, a set of reconstructed images focused on targets at varying depths are derived from the encoded image. After that, the DoF is extended through focus stacking. The experimental results demonstrate an 8-fold increase compared with the calibrated DoF at 130 mm depth. Moreover, our depth estimation method is five times faster than the traversal method, while maintaining the same level of accuracy. The proposed method facilitates the development of lensless imaging in practical applications such as photography, microscopy, and surveillance.

10.
J Asian Nat Prod Res ; : 1-7, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38563409

ABSTRACT

A newly discovered trihydroxynaphthalenone derivative, epoxynaphthalenone (1) involving the condensation of ortho-hydroxyl groups into an epoxy structure, and a novel pyrone metabolite characterized as pyroneaceacid (2), were extracted from Talaromyces purpurpgenus, an endophytic fungus residing in Rhododendron molle. The structures of these compounds were elucidated through a comprehensive analysis of their NMR and HRESIMS data. The determination of absolute configurations was accomplished using electronic circular dichroism (ECD) calculations and CD spectra. Notably, these recently identified metabolites exhibited a moderate inhibitory activity against xanthine oxidase (XOD).

11.
Article in English | MEDLINE | ID: mdl-38657155

ABSTRACT

OBJECTIVE: This study aimed to explore the value of preoperative and postoperative computed tomography (CT)-based radiomic signatures and Δ radiomic signatures for evaluating the early efficacy of microwave ablation (MWA) for pulmonary malignancies. METHODS: In total, 115 patients with pulmonary malignancies who underwent MWA treatment were categorized into response and nonresponse groups according to relevant guidelines and consensus. Quantitative image features of the largest pulmonary malignancies were extracted from CT noncontrast scan images preoperatively (time point 0, TP0) and immediately postoperatively (time point 1, TP1). Critical features were selected from TP0 and TP1 and as Δ radiomics signatures for building radiomics models. In addition, a combined radiomics model (C-RO) was developed by integrating radiomics parameters with clinical risk factors. Prediction performance was assessed using the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA). RESULTS: The radiomics model using Δ features outperformed the radiomics model using TP0 and TP1 features, with training and validation AUCs of 0.892, 0.808, and 0.787, and 0.705, 0.825, and 0.778, respectively. By combining the TP0, TP1, and Δ features, the logistic regression model exhibited the best performance, with training and validation AUCs of 0.945 and 0.744, respectively. The DCA confirmed the clinical utility of the Δ radiomics model. CONCLUSIONS: A combined prediction model, including TP0, TP1, and Δ radiometric features, can be used to evaluate the early efficacy of MWA in pulmonary malignancies.

12.
Brain Res ; : 148956, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657888

ABSTRACT

Recent advancements in neuroimaging have illustrated that anterior cruciate ligament (ACL) injuries could impact the central nervous system (CNS), causing neuroplastic changes in the brain beyond the traditionally understood biomechanical consequences. While most of previous functional magnetic resonance imaging (fMRI) studies have focused on localized cortical activity changes post-injury, emerging research has suggested disruptions in functional connectivity across the brain. However, these prior investigations, albeit pioneering, have been constrained by two limitations: a reliance on small-sample participant cohorts, often limited to two to three patients, potentially limiting the generalizability of findings, and an adherence to region of interest based analysis, which may overlook broader network interactions. To address these limitations, our study employed resting-state fMRI to assess whole-brain functional connectivity in 15 ACL-injured patients, comparing them to matched controls using two distinct network analysis methods. Using Network-Based Statistics, we identified widespread reductions in connectivity that spanned across multiple brain regions. Further modular connectivity analysis showed significant decreases in inter-modular connectivity between the sensorimotor and cerebellar modules, and intra-modular connectivity within the default-mode network in ACL-injured patients. Our results thus highlight a shift from localized disruptions to network-wide dysfunctions, suggesting that ACL injuries induce widespread CNS changes. This enhanced understanding has the potential to stimulate the development of strategies aiming to restore functional connectivity and improve recovery outcomes.

13.
Nucleic Acids Res ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647076

ABSTRACT

Absorption, distribution, metabolism, excretion and toxicity (ADMET) properties play a crucial role in drug discovery and chemical safety assessment. Built on the achievements of admetSAR and its successor, admetSAR2.0, this paper introduced the new version of the series, admetSAR3.0, as a comprehensive platform for chemical ADMET assessment, including search, prediction and optimization modules. In the search module, admetSAR3.0 hosted over 370 000 high-quality experimental ADMET data for 104 652 unique compounds, and supplemented chemical structure similarity search function to facilitate read-across. In the prediction module, we introduced comprehensive ADMET endpoints and two new sections for environmental and cosmetic risk assessments, empowering admetSAR3.0 to provide prediction for 119 endpoints, more than double numbers compared to the previous version. Furthermore, the advanced multi-task graph neural network framework offered robust and reliable support for ADMET prediction. In particular, a module named ADMETopt was added to automatically optimize the ADMET properties of query molecules through transformation rules or scaffold hopping. Finally, admetSAR3.0 provides user-friendly interfaces for multiple types of input data, such as SMILES string, chemical structure and batch molecule file, and supports various output types, including digital, chart displays and file downloads. In summary, admetSAR3.0 is anticipated to be a valuable and powerful tool in drug discovery and chemical safety assessment at http://lmmd.ecust.edu.cn/admetsar3/.

14.
Adv Sci (Weinh) ; : e2401345, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38647436

ABSTRACT

The development of semiconducting polymers with good processability in green solvents and competitive electrical performance is essential for realizing sustainable large-scale manufacturing and commercialization of organic electronics. A major obstacle is the processability-performance dichotomy that is dictated by the lack of ideal building blocks with balanced polarity, solubility, electronic structures, and molecular conformation. Herein, through the integration of donor, quinoid and acceptor units, an unprecedented building block, namely TQBT, is introduced for constructing a serial of conjugated polymers. The TQBT, distinct in non-symmetric structure and high dipole moment, imparts enhanced solubility in anisole-a green solvent-to the polymer TQBT-T. Furthermore, PTQBT-T possess a highly rigid and planar backbone owing to the nearly coplanar geometry and quinoidal nature of TQBT, resulting in strong aggregation in solution and localized aggregates in film. Remarkably, PTQBT-T films spuncast from anisole exhibit a hole mobility of 2.30 cm2 V-1 s-1, which is record high for green solvent-processable semiconducting polymers via spin-coating, together with commendable operational and storage stability. The hybrid building block emerges as a pioneering electroactive unit, shedding light on future design strategies in high-performance semiconducting polymers compatible with green processing and marking a significant stride towards ecofriendly organic electronics.

15.
Article in English | MEDLINE | ID: mdl-38650081

ABSTRACT

The storage of dynamic information in hydrogels has aroused considerable interest regarding the multiple responsiveness of soft matter. Herein, we propose an electrical writing methodology to prepare dopamine (DA)-modified chitosan hydrogels with a dynamic information storage ability. A pH-responsive chitosan hydrogel medium was patterned by cathodic writing to in situ generate OH- in the writing area, at which dopamine underwent an auto-oxidation reaction in the locally alkaline environment to generate a dark color. The patterned information on the hydrogel can be encoded simply by electrical signals. The speed of information retrieval is positively correlated with the charge transfer during the electrical writing process, and the hiding of information is negatively correlated with the environmental stimulus (i.e., dopamine concentration, pH value, etc.). To showcase the versatility of this medium for information storage and the precision of the pattern, a quick response (QR) code is electronically written on dopamine-modified chitosan hydrogel and can be recognized programmably by a standard mobile phone. The results show that electrical regulation is a novel means to program the information storage process of hydrogels, which inspires future research on structural and functional information storage using stimulus-responsive hydrogels.

16.
J Chin Med Assoc ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38651854

ABSTRACT

BACKGROUND: Iodine nutrition is critical for fetal neurodevelopment in the first trimester of pregnancy, a period associated with dramatic changes in thyroid function. The aim of this study was to evaluate iodine nutritional status and thyroid function reference ranges in the first trimester in Taiwan. METHODS: Pregnant women aged 20 years and above in the first trimester were recruited in Taipei Veterans General Hospital, Taiwan from March 2019 to July 2022. Each participant provided a spot urine sample for measurement of urinary iodine concentration (UIC) and a blood sample for check-up of thyroid function and thyroid autoantibodies. A simple food frequency questionnaire was also completed. RESULTS: A total of 209 women with a mean age of 32.9 ± 4.4 years were enrolled. The median UIC was 160.9 µg/L [interquartile range (IQR): 105.0-246.2 µg/L], indicating overall iodine sufficiency. The gestational thyroid function reference ranges were: TSH [median: 0.93 (0.007-2.9) µIU/mL], free T4 [1.3 (0.93-2.2) ng/dL], free T3 [3.0 (2.3-5.0) ng/dL], total T4 [9.9 (6.4-16.9) ng/dL] and total T3 [135 (88-231) ng/dL]. If the non-pregnant reference range of serum TSH was used, eight women (4.8%) would be misclassified as having subclinical hyperthyroidism, and two women (1.2%) with subclinical hypothyroidism would be missed. In multivariate analysis, nulliparous [adjusted odds ratio (OR) from model 1-3: 2.02, 2.05, 2.02; 95% confidence interval (CI): 1.08-3.77, 1.10-3.81, 1.11-3.66; p = 0.027, 0.023, 0.022, respectively] and multivitamin non-users (adjusted OR from model 1-3: 1.86, 1.85, 1.78; 95% CI: 1.04-3.34, 1.03-3.32, 1.004-3.71; p = 0.038, 0.039, 0.049, respectively) had increased odds of having lower UIC levels <150 µg/L. CONCLUSION: The iodine nutritional status in the first trimester is adequate in Taiwan; however, certain subgroups such as nulliparous and multivitamin non-users are still at risk for iodine deficiency. Gestational thyroid function reference ranges are needed for correct diagnosis of thyroid dysfunction in pregnancy.

18.
IEEE Trans Med Imaging ; PP2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38625765

ABSTRACT

Intraoperative imaging techniques for reconstructing deformable tissues in vivo are pivotal for advanced surgical systems. Existing methods either compromise on rendering quality or are excessively computationally intensive, often demanding dozens of hours to perform, which significantly hinders their practical application. In this paper, we introduce Fast Orthogonal Plane (Forplane), a novel, efficient framework based on neural radiance fields (NeRF) for the reconstruction of deformable tissues. We conceptualize surgical procedures as 4D volumes, and break them down into static and dynamic fields comprised of orthogonal neural planes. This factorization discretizes the four-dimensional space, leading to a decreased memory usage and faster optimization. A spatiotemporal importance sampling scheme is introduced to improve performance in regions with tool occlusion as well as large motions and accelerate training. An efficient ray marching method is applied to skip sampling among empty regions, significantly improving inference speed. Forplane accommodates both binocular and monocular endoscopy videos, demonstrating its extensive applicability and flexibility. Our experiments, carried out on two in vivo datasets, the EndoNeRF and Hamlyn datasets, demonstrate the effectiveness of our framework. In all cases, Forplane substantially accelerates both the optimization process (by over 100 times) and the inference process (by over 15 times) while maintaining or even improving the quality across a variety of non-rigid deformations. This significant performance improvement promises to be a valuable asset for future intraoperative surgical applications. The code of our project is now available at https://github.com/Loping151/ForPlane.

19.
Heliyon ; 10(8): e26832, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38628727

ABSTRACT

Alzheimer's disease is the most common form of dementia and is characterized by cognitive impairment. The disruption of autophagosome-lysosome function has been linked to the pathogenesis of Alzheimer's disease. Tris (1,3-dichloro-2-propyl) phosphate (TDCIPP) is a widely used organophosphorus flame retardant that has the potential to cause neuronal damage. We found that TDCIPP significantly increased the expression of ß-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), presenilin-1 (PS1) and Aß42. Proteomic studies with TMT labeling revealed changes in the profiles of N2a-APPswe cells after exposure to TDCIPP. Proteomic and bioinformatics analyses revealed that lysosomal proteins were dysregulated in N2a-APPswe cells after treatment with TDCIPP. The LC3, P62, CTSD, and LAMP1 levels were increased after TDCIPP exposure, and dysregulated protein expression was validated by Western blotting. The exposure to TDCIPP led to the accumulation of autophagosomes, and this phenomenon was enhanced in the presence of chloroquine (CQ). Our results revealed for the first time that TDCIPP could be a potential environmental risk factor for AD development. The inhibition of autophagosome-lysosome fusion may have a significant impact on the generation of Aß1-42 in response to TDCIPP.

20.
J Vis Exp ; (205)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38587399

ABSTRACT

Catheter-related infection (CRI) is a common nosocomial infection caused by candida albicans during catheter implantation. Typically, biofilms are formed on the outer surface of the catheter and lead to disseminated infections, which are fatal to patients. There are no effective prevention and treatment management in clinics. Therefore, it is urgent to establish an animal model of CRI for the preclinical screening of new strategies for its prevention and treatment. In this study, a polyethylene catheter, a widely used medical catheter, was inserted into the back of the BALB/c mice after hair removal. Candida albicans ATCC MYA-2876 (SC5314) expressing enhanced green fluorescent protein was subsequently inoculated on the skin's surface along the catheter. Intense fluorescence was observed on the surface of the catheter under a fluorescent microscope 3 days later. Mature and thick biofilms were found on the surface of the catheter via scanning electron microscopy. These results indicated the adhesion, colonization, and biofilm formation of candida albicans on the surface of the catheter. The hyperplasia of the epidermis and the infiltration of inflammatory cells in the skin specimens indicated the histopathological changes of the CRI-associated skin. To sum up, a mouse CRI model was successfully established. This model is expected to be helpful in the research and development of therapeutic management for candida albicans associated CRI.


Subject(s)
Candida albicans , Catheter-Related Infections , Humans , Mice , Animals , Catheters , Disease Models, Animal , Biofilms , Antifungal Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...